JOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS *J Label Compd Radiopharm* 2003; **46**: 1177–1179. Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jlcr.777

Note

Synthesis of [¹³C₂]nifedipine

Kuniaki Ohtaka and Masahiro Kajiwara*

Department of Medicinal Chemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose-shi, Tokyo 204-8588, Japan

Summary

 $[^{13}C_2]$ Nifedipine (<u>3</u>) was synthesized from $[^{13}C]$ methanol (<u>1</u>) in two steps. Copyright © 2003 John Wiley & Sons, Ltd.

Key Words: Hantzch reaction; $[{}^{13}C_2]$ nifedipine; di $[{}^{13}C]$ methyl 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinedicarboxylate; $[{}^{13}C]$ methyl 3-oxobutanoate; $[{}^{13}C]$ methanol

Introduction

Dimethyl 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinedicarboxylate (3) (Bayer 1040; Nifedipine), a calcium channel blocker used clinically in the treatment of hypertension and oxygen deficiency diseases of the heart,¹ is synthesized by application of the Hantzch reaction.² Since the ¹³C-labeled drug would be useful in ¹³C-NMR studies of its interactions with other drugs or biological molecules, we synthesized ¹³C-labeled nifedipine (<u>3</u>).

Results and discussion

As shown in Scheme 1, $[^{13}C]$ methanol (<u>1</u>) was esterified with diketene in the presence of a catalytic amount of dry triethylamine to afford

*Correspondence to: M. Kajiwara, Department of Medicinal Chemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose-shi, Tokyo 204-8588, Japan. E-mail: kajiwara@my-pharm. ac.jp

Copyright © 2003 John Wiley & Sons, Ltd.

Received 9 June 2003 Revised 17 July 2003 Accepted 29 July 2003

Scheme 1.

 $[^{13}C]$ methyl 3-oxobutanoate (2).³ Reaction of this product (2) with 2-nitrobenzaldehyde, and ammonia solution (28%) gave $[^{13}C_2]$ nifedipine (3) in 85% yield.

Experimental

Materials

 $[^{13}C]$ Methanol (99.5 atom% ^{13}C) was purchased from Isotec Inc. All other chemicals were of analytical grade.

Instruments

Melting point determinations were carried on a Yanaco micro-melting point apparatus, Model MP; values are uncorrected. ¹H-NMR (300 MHz) and ¹³C-NMR (75.4 MHz) spectra were recorded on a Varian Gemini 2000 spectrometer. EI-MS spectra were obtained on a JMS-700 spectrometer.

$[^{13}C]$ Methyl 3-oxobutanoate (2)

Dry triethylamine (0.3 ml, 2.2 mmol) followed by diketene (2.5 ml, 32.7 mmol) was added to [¹³C]methanol (<u>1</u>) (0.87 ml, 21.4 mmol) in dry dichloromethane (20 ml). The mixture was refluxed for 2 h, then allowed to cool to room temperature, and water was added. The solution was extracted with ether three times and the combined extracts were washed with brine, then dried (MgSO₄) and evaporated. Distillation of the crude product gave [¹³C]methyl 3-oxobutanoate (<u>2</u>) (2.52 g, quant.), b.p. 65–73°C (28 mmHg); ¹H-NMR (CDCl₃) δ : 2.28 (s, 3 H), 3.49 (d, 3 H, J=9.6 Hz), 4.00 (s, 2 H); ¹³C-NMR (CDCl₃) δ : 52.4; EI-MS m/z (rel. int. %): 117 (M⁺, 29).

 $Di[^{13}C]$ methyl 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridine-dicarboxylate (3)

A solution of [¹³C]methyl 3-oxobutanoate (2) (0.93 ml, 8.6 mmol), ammonia solution (28%) (0.6 ml, 10 mmol) and 2-nitrobenzaldehyde (0.65 g, 4.3 mmol) in dry ethanol (5 ml) was refluxed for 3 h, then the mixture was evaporated. The residue was recrystallized from ethanol-ether to give di[¹³C]methyl 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinedicarboxylate (3) (1.26 g, 85%), m.p. 169–173°C; ¹H-NMR (CDCl₃) δ : 2.49 (s, 6 H), 3.59 (d, 6 H, J=144.7 Hz), 5.72 (s, 1 H), 7.20 (m, total 4 H); ¹³C-NMR (CDCl₃) δ : 51.0; EI-MS *m*/*z* (rel. int. %): 348 (M⁺, 10).

References

- Janis RA, Triggle DJ. J Med Chem 1983; 26: 775–785; Miller RJ, Freedman SB. Life Sci 1984; 34: 1205–1221.
- 2. Phillips AP. J Am Chem Soc 1949; 71: 4003–4007.
- 3. Mitchell RH, Vinod TK, Bushnell GW. J Am Chem Soc 1990; 112: 3487–3497.